Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength
نویسندگان
چکیده
This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for high strain Lagrangian hydrodynamics with material strength. In ASPH, the isotropic kernel in the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Except for the features inherited from the standard SPH, ASPH can capture dimension-dependent features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. Two numerical examples, the impact of a plate against a rigid surface and the penetration of a cylinder through a plate, are investigated using both SPH and ASPH. The comparative studies show that ASPH has better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent anisotropic deformations.
منابع مشابه
Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملInvestigation on the sloshing effect in a 2D tank under harmonic excitation using Smoothed Particle Hydrodynamics (SPH) and Finite Volume method (FVM)
Abstract Sloshing describes liquids motion in the semi-filled tanks, and exerts dynamic loading on its walls. This effect is of great importance in a number of dynamic systems e.g. aerospace vehicles, road tankers, liquefied natural gas carriers, elevated water towers and petroleum cylindrical tanks. Pressures insert impacts which are important for structural strength evaluation and its co...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کامل